<img height="1" width="1" style="display:none" src="https://www.facebook.com/tr?id=747520772257475&amp;ev=PageView&amp;noscript=1">

Storia dell'AI: Deep Blue e Intelligenza Artificiale forte e debole

Le innovazioni degli anni ‘90 tra dibattiti sull’Intelligenza Artificiale forte e debole e la vittoria Deep blue contro il campione mondiale di scacchi.

Siamo alla quarta puntata del nostro viaggio all’interno della storia dell’Intelligenza Artificiale. Abbiamo delineato i primi passi mossi dall’AI partendo da Alan Turing e John McCarthy,  siamo passati ai due decenni successivi con il machine learning  per poi arrivare agli anni ‘80 dei sistemi esperti e gli inverni dell'AI.

Ora scopriamo gli anni ‘90 e l'evoluzione tecnologica che ne è conseguita.

Anni ‘80: dove eravamo rimasti

Dopo l’avvento dei sistemi esperti di prima generazione, alla fine degli anni ’70, con il decennio successivo arrivano quelli di seconda generazione e l’introduzione del modello probabilistico che, a differenza di quello deterministico, ragiona su “causa-possibili effetti”. 

Ma questa non è certamente l’unica novità degli anni ‘80: infatti viene reinventato l’algoritmo di back propagation, inizialmente ideato da Bryson e Ho nel 1969, e relativo all’apprendimento per le reti neurali.

Questo ha permesso di creare un’alternativa ai modelli simbolici (utilizzati da McCarthy e tanti altri) attraverso i modelli connessionisti, che si pongono l’obiettivo di spiegare il funzionamento della mente ricorrendo all’utilizzo di reti neurali artificiali.

Ma non furono solo anni di innovazione. Ci furono anche quelli che vengono chiamati “AI winter” ovvero “inverni dell’AI”, periodi più o meno lunghi in cui si assiste ad un calo dell'entusiasmo nei confronti dell’intelligenza artificiale e, di conseguenza, degli investimenti nel settore.

Uno di questi accade nel 1987 quando la DARPA, agenzia governativa del Dipartimento della Difesa degli Stati Uniti, nonché uno dei maggiori finanziatori della ricerca sull’intelligenza artificiale che solo nel 1985 aveva speso 100 milioni di dollari per ricerche nel settore, decide di interrompere gli investimenti scegliendo di concentrarsi solo sulle tecnologie che avevano migliori promesse.

Deep Blue vince a scacchi 

deep-blue-Tom Mihalek/ANSA

È il 1996 e a Philadelphia si sta tenendo una partita di scacchi. Uno dei due giocatori è il campione del mondo Garri Kimovič Kasparov, noto per essere il più giovane ad aver conquistato il titolo, a 22 anni e 210 giorni.

Fino a qui, niente di particolare, se non fosse che l’altro giocatore “Deep Blue” è un computer, progettato da IBM per giocare a scacchi.

La sfida viene vinta da Kasparov ma la rivincita non tarda ad arrivare: l’anno successivo infatti Deep Blue, dopo un aggiornamento, riesce a superare il campione mondiale, aggiudicandosi la vittoria.

Il progetto originale risale al decennio precedente, al 1985, quando lo studente Feng-hsiung Hsu progetta per la tesi di laurea una macchina per giocare a scacchi, chiamata ChipTest.

Nel 1989 a questo progetto si aggiunge Murray Campbell, suo compagno di classe, e altri scienziati informatici, tra cui Joe Hoane, Jerry Brody e CJ Tan. 

Il giocatore di scacchi aprì la strada a una vasta gamma di possibili campi di utilizzo: la ricerca ha infatti permesso agli sviluppatori di comprendere i modi in cui progettare un computer per affrontare problemi complessi in altri campi, utilizzando una conoscenza approfondita per analizzare un numero maggiore di possibili soluzioni

Una vittoria così rivoluzionaria generò immancabilmente anche numerose critiche relative a cosa significasse la supremazia umana sulle macchine e che cosa comportasse.

Si cercò inoltre di minimizzare l’evento, concentrandosi principalmente sul “ruolo del supercomputer progettato per il compito più che sulle sofisticate tecniche usate dal team dei programmatori” (Kaplan, 2017).

AI debole e AI forte

Già noto agli studiosi, negli anni ‘90 si accende ulteriormente il dibattito tra AI debole e AI forte.

La mente umana inizia ad essere vista come qualcosa di programmabile e pertanto sostituibile da una macchina.

Vediamo insieme le caratteristiche dell’AI debole e forte e le principali differenze.

AI debole (weak AI)

L’AI debole nasce con lo scopo di creare sistemi in grado di agire con successo in alcune funzioni complesse umane, come ad esempio la traduzione automatica di testi o problemi matematici di problem-solving.

Ma l’obiettivo non è quello di eguagliare e superare l’intelligenza umana, quanto invece di agire come un soggetto intelligente, senza che abbia alcuna importanza se lo è davvero.

La macchina infatti non è capace di pensare in maniera autonoma, rimanendo vincolata alla presenza dell’uomo.

AI forte (strong AI)

Secondo John Searle, filosofo del linguaggio e della mente “il computer non sarebbe soltanto, nello studio della mente, uno strumento; piuttosto, un computer programmato opportunamente è davvero una mente”.

Per AI forte, infatti, si intende un agente razionale in grado di svolgere le stesse operazioni dell'uomo e risolvere i problemi in modo autonomo, con un livello di intelligenza pari o superiore a quella umana. 

La tecnologia utilizzata è quella dei sistemi esperti che vengono definiti da Jerry Kaplan, nel libro “Intelligenza artificiale. Guida al futuro prossimo”: “L’approccio comune alla programmazione richiedeva che lo stesso programmatore fosse un esperto dell’ambito di competenza del programma, e che fosse sempre prontamente disponibile per effettuare le modifiche […]. Al contrario, il concetto dietro ai sistemi esperti era rappresentare esplicitamente la conoscenza dell’ambito, rendendola disponibile per analisi e modifiche”. 

I sistemi esperti operano in tre step

  • regole e procedure: necessarie al sistema per funzionare;

  • motore inferenziale: algoritmo che simula il ragionamento umano; 

  • interfaccia utente: dove essere umano e macchina comunicano.

Quest’ultimo punto è alla base dall’AI forte e apre il dibattito: se la conoscenza può essere “insegnata” alla macchina, questa può sostituirsi all’essere umano?

 

Ti sei perso i decenni precedenti?

Anni '50: da Alan Turing a John McCarthy

Anni '60-'70: il machine learning e i sistemi esperti

Anni '80: i sistemi esperti e gli inverni dell’AI